Supplement to Temporal Logic
Supplement: Burgess’ Axiomatic System for PBTL
Burgess’ (1980) axiomatic system for PBTL extends classical propositional logic by
- the familiar axiom schemata \((K_H)\) and \((K_G)\) (see Section 3.5), as well as \(G(\varphi \rightarrow \psi)\rightarrow (F\varphi \rightarrow F\psi),\)
- the axiom schemata (GP) and the Peircean variant of (HF) (cf. Section 3.5): \(\varphi \rightarrow H\neg G\neg\varphi,\)
- the axiom schemata (NOBEG) and Peircean versions of (NOEND) (cf. Section 3.6): \(G\varphi \rightarrow F\varphi\) and \(G\varphi \rightarrow \neg F\neg\varphi,\)
- the axiom scheme (TRANS) for H, G, and F (cf. Section 3.6),
- the axiom schemata \(H\varphi \rightarrow (\varphi \rightarrow (G\varphi \rightarrow GHp))\) and \(H\varphi \rightarrow (\varphi \rightarrow (\neg F\neg\varphi \rightarrow \neg F\neg Hp)),\) and
- the axiom scheme \(FG\varphi \rightarrow GF\varphi.\)
The inference rules comprise, in addition to (MP), (NEC\(_H\)), and (NEC\(_G\)) (see Section 3.5),
- a version of the so-called Gabbay Irreflexivity Rule: If \(\vdash H\neg\varphi \rightarrow (\neg\varphi \rightarrow (G\varphi \rightarrow \psi)),\) then \(\vdash \psi,\) provided \(\varphi\) does not occur in \(\psi\).